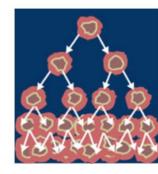

How to predict your risk factors with... Data Science!

Dataset

What is it, what should be in it, and where can I get one?

Here's a	n ex	ampl	e:	column, feature, predictor, or (risk) factor		s is how to ca components o dataset				(target, goal, class, or risk
_ (Clump	Uniformity of	Uniformity of	Marginal	Single	Bare	Bland	Normal	***	Diagnosis
header	Sample	Thickness	Cell Size	Cell Shape	Adhesion	Epithelial Cell Size	Nuclei	Chromatin	Nucleoli	Mitoses	Diagnosis
L L	code										
	1000025	5	1	1	1	2	1.0	3	1	1	2
	1002945	5	4	4	5	7	10.0	3	2	1	2
row or	1015425	3	1	1	1	2	2.0	3	1	1	2
record	1016277	6	8	8	1	3	4.0	3	7	1	2
record	1017023	4	1	1	3	2	1.0	3	1	1	2
	1017122	8	10	10	8	7	10.0	9	7	1	4
	1018099	1	1	1	1	2	10.0	3	1	1	2
	1018561	2	1	2	1	2	1.0	3	1	1	2
	1033078	2	1	1	1	2	1.0	1	1	5	2
	1033078	4	2	1	1	2	1.0	2	1	1	2
											Ţ

This is public data from:



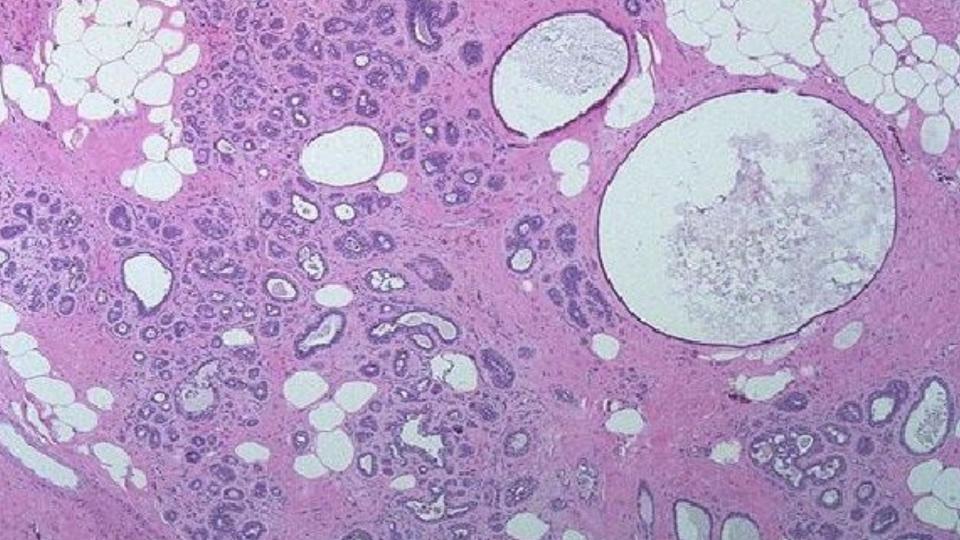
Machine Learning Repository Center for Machine Learning and Intelligent Systems

Breast Cancer Wisconsin (Original) Data Set

Download: Data Folder, Data Set Description

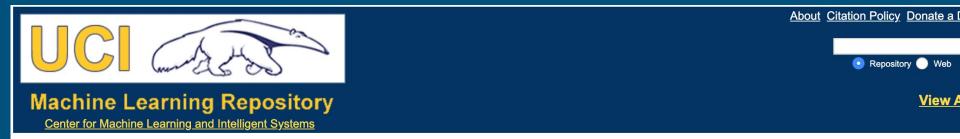
Abstract: Original Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	699	Area:	Life
Attribute Characteristics:	Integer	Number of Attributes:	10	Date Donated	1992-07-15
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	501135


Source:

Creator:

Dr. WIlliam H. Wolberg (physician) University of Wisconsin Hospitals Madison, Wisconsin, USA


The meaning of the data:

patient identifie		?		ssible) cel	breast. Is it can Iular risk factors				(th 4	final agnosis he truth): means alignant
	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses	Diagnosis
Sample code										
1000025	5	1	1	1	2	1.0	3	1	1	2
1002945	5	4	4	5	7	10.0	3	2	1	2
1015425	3	1	1	1	2	2.0	3	1	1	2
1016277	6	8	8	1	3	4.0	3	7	1	2
1017023	4	1	1	3	2	1.0	3	1	1	2
1017122	8	10	10	8	7	10.0	9	7	1	5 4

Another example from:

(see the notebook for the data)

Communities and Crime Unnormalized Data Set

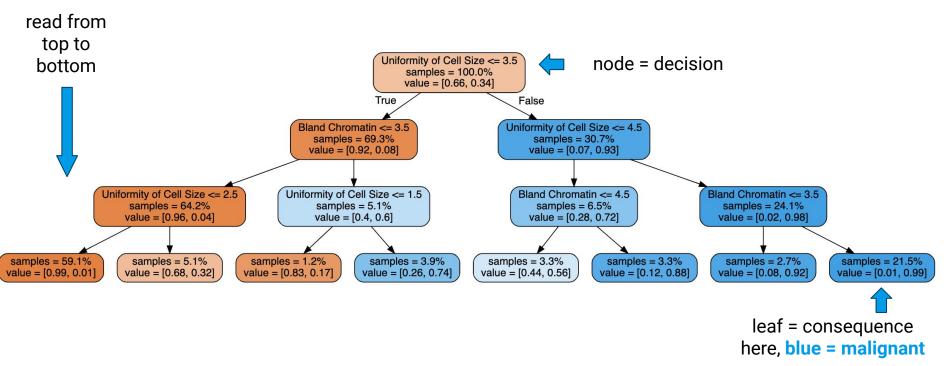
Download: Data Folder, Data Set Description

Abstract: Communities in the US. Data combines socio-economic data from the '90 Census, law enforcement data from the 1990 Law Enforcement Management and Admin Stats surv data from the 1995 FBI UCR

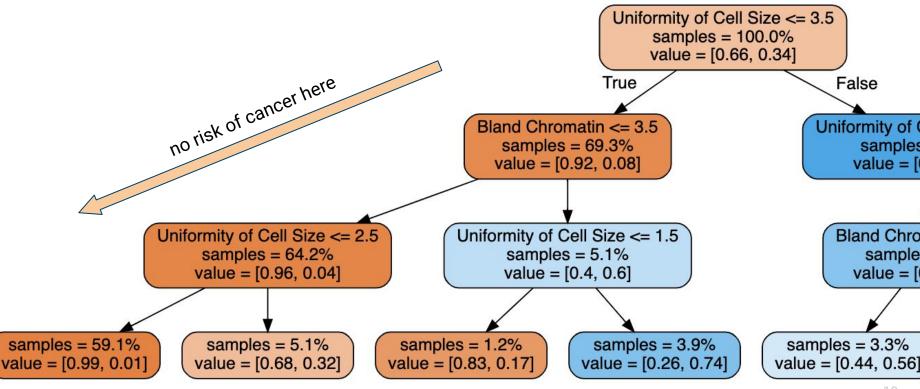
Data Set Characteristics:	Multivariate	Number of Instances:	2215	Area:	Social
Attribute Characteristics:	Real	Number of Attributes:	147	Date Donated	2011-03-02
Associated Tasks:	Regression	Missing Values?	Yes	Number of Web Hits:	128276

Source:

-- Creator: Michael Redmond (redmond 'at' lasalle.edu); Computer Science; La Salle University; Philadelphia, PA, 19141, USA

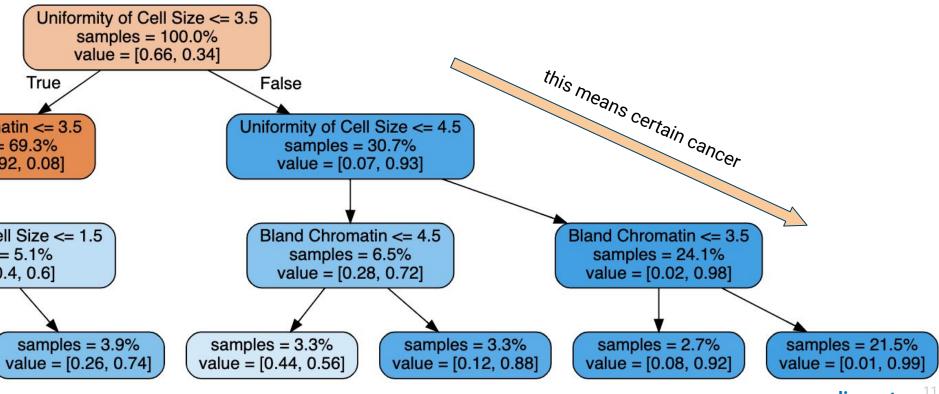

-- culled from 1990 US Census, 1995 US FBI Uniform Crime Report, 1990 US Law Enforcement Management and Administrative Statistics Survey, available from ICPSR at U of Michiga

-- Donor: Michael Redmond (redmond 'at' lasalle.edu); Computer Science; La Salle University; Philadelphia, PA, 19141, USA

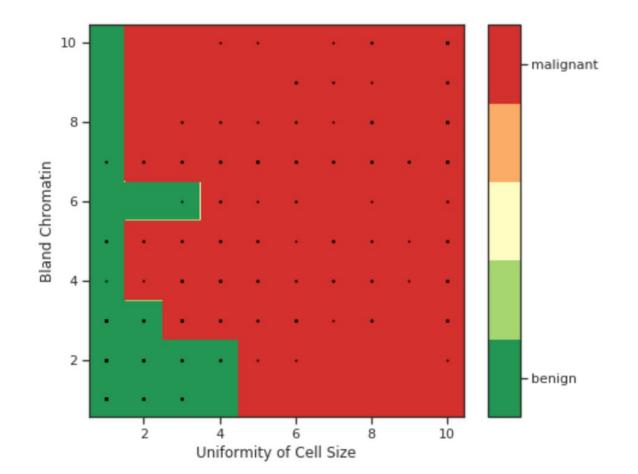

Machine learning (ML)

Summarizes historical data into a statistical model.
What we gain:
(1) the model may predict well future risk
(2) we can read the model and understand the factors

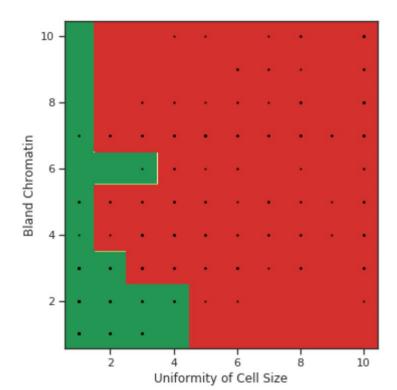
Type of model: the decision tree. Models decisions and their consequences in many domains.



Models very well the relation between risk factors and risk.

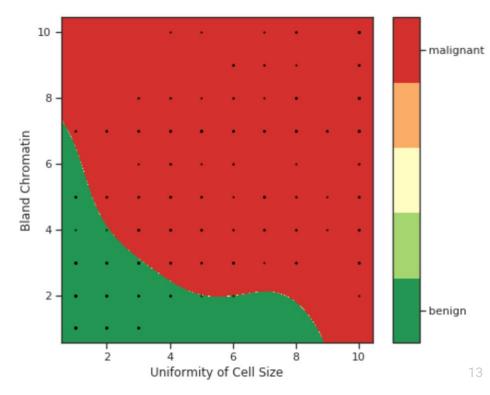

benign

Models very well the relation between risk factors and risk.



malignant

Another good way to understand the same decision tree:



Other types of models give slightly different decisions:

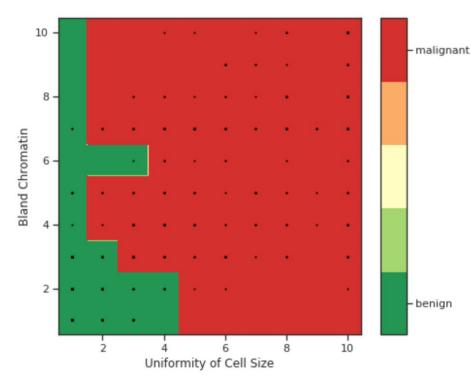
Decision Tree

Support Vector Machine with a radial kernel

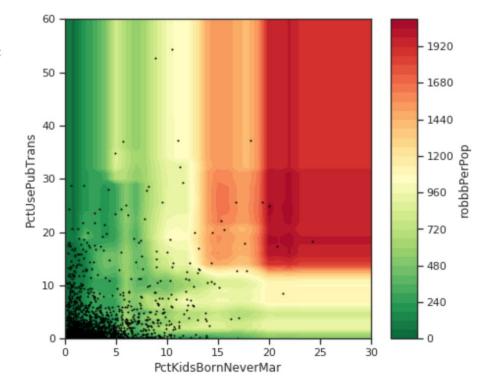
Two main classes of models

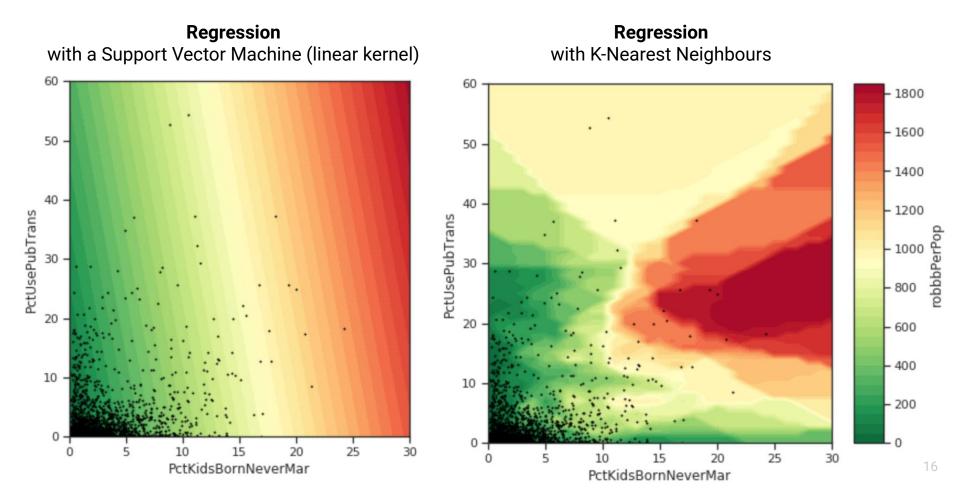
Look at the target that you want to predict:

https://en.wikipedia.org/wiki/Categorical_variable Doina Bucur, University of Twente, NL Is the target categorical (qualitative)?


• Classification model

Otherwise (quantitative):


• **Regression** model


	murdPerPop	robbbPerPop	ViolentCrimesPerPop
	0.00	8.20	41.02
	0.00	21.26	127.56
	8.30	154.95	218.59
	0.00	57.86	306.64
	4.63	90.05	442.95
l			

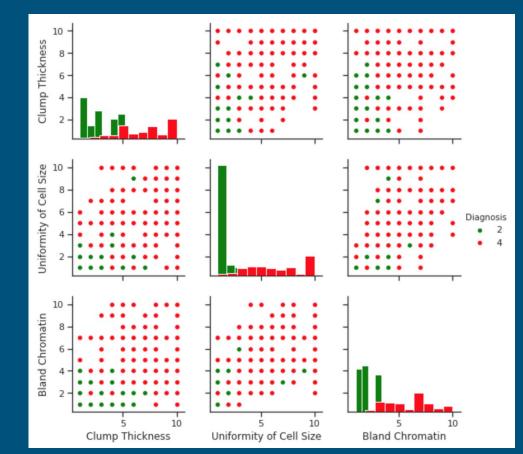
Classification with a Decision Tree

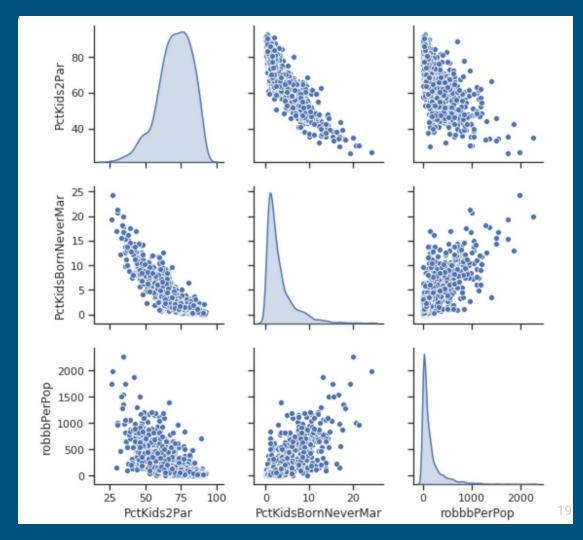
Regression with multiple Decision Trees (a Random Forest)

The ML steps

- 1. Understand the data
- 2. Select the set of features and the target to predict
- 3. Choose the type of model
- 4. Learn the model: Train, then test
- 5. Judge the performance
- 6. Understand the important features and their role

Understand the data

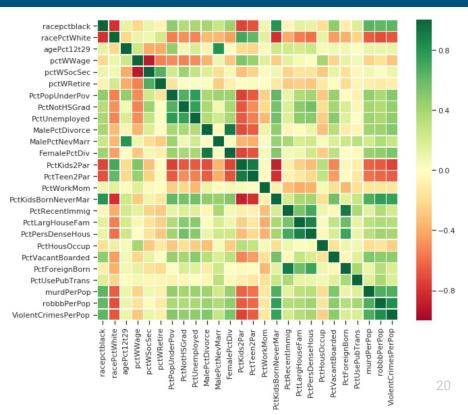

Questions to ask yourselves:


Is the data "balanced"? (you have records for all target values)

Are there patterns in the data?

Does any feature clearly help determine the target?

Are there redundant features?

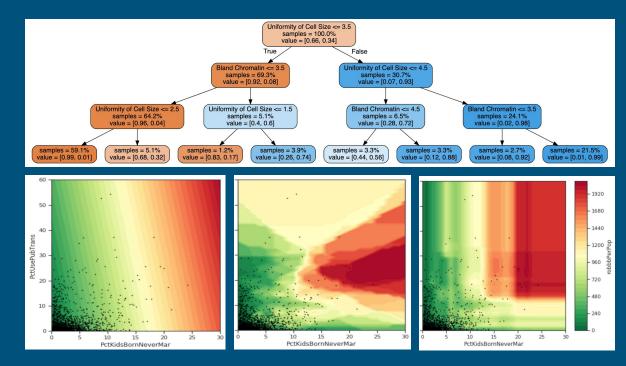

2. Select features, target

Having many features will confuse the training algorithm.

Feature selection:

- remove features which vary little
- remove highly similar features
- keep features which appear related to the target

https://en.wikipedia.org/wiki/Feature_selection Doina Bucur, University of Twente, NL correlation matrix

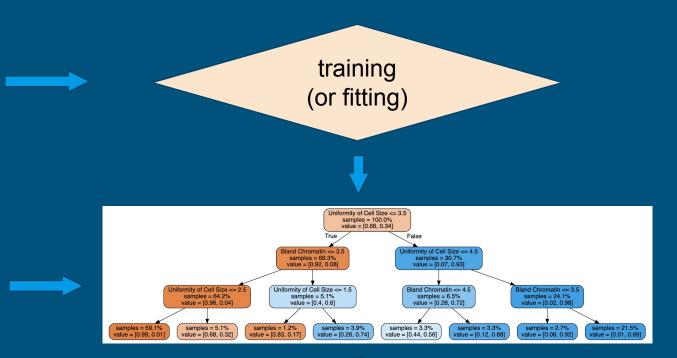

3. Choose the type of model

Try more than one.

Start with the **simplest**.

Include the one **easiest** to understand.

Most are tunable!


4. Learn the model

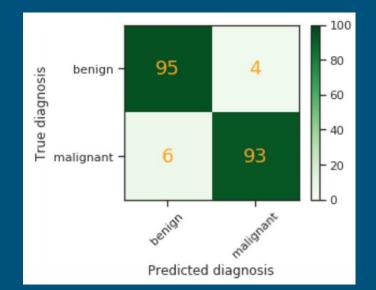
training data

epctblack	racePctWhite	agePct12t29	pctWWage	pctWSocSec	pctWRetire	PctPopUnderPov
1.37	91.78	21.44	89.24	23.62	18.39	1.96
0.80	95.57	21.30	78.99	35.50	22.85	3.98
0.74	94.33	25.88	82.00	22.25	14.56	4.75
1.70	97.35	25.20	68.15	39.48	18.33	17.23
2.51	95.65	32.89	75.78	29.31	14.09	17.78
1.60	96.57	27.41	79.47	30.23	17.23	4.01
14.20	84.87	27.93	71.60	32.58	22.59	17.98
0.35	97.11	35.16	83.69	19.30	10.31	13.68
23.14	67.60	34.55	74.20	29.09	13.99	28.68
12.63	83.22	28.57	73.92	32.68	15.20	15.61
21.34	49.42	28.82	73.45	22.99	13.18	19.02
12.18	86.39	36.83	75.23	27.11	13.84	23.91
53.52	45.65	28.17	69.31	33.46	14.16	27.71
2.65	95.72	27.51	84.94	24.74	18.37	2.89
1.30	74.02	26.68	76.17	20.30	11.51	14.37
2.28	94.74	20.33	81.88	23.77	19.47	2.35

testing data

8.41	82.64	32.78	90.25	11.05	9.12	8.21
28.71	52.26	27.46	73.57	24.60	12.56	19.29
18.97	53.60	37.22	90.39	10.74	15.99	9.67
0.41	97.55	26.87	84.63	23.87	10.47	6.07
13.79	83.94	23.09	80.47	27.98	23.43	5.75
0.06	97.72	25.81	73.97	31.04	16.09	8.72
0.41	94.65	18.30	80.46	25.19	15.55	3.33
2.92	87.36	30.92	78.15	21.99	16.03	12.92
1.89	82.45	25.62	72.45	27.62	16.58	15.28

final performance score(s), for example: "the model is 80% accurate on the test data"


5. Judge the performance (classification)

Accuracy:

the fraction of predictions the model classified right.

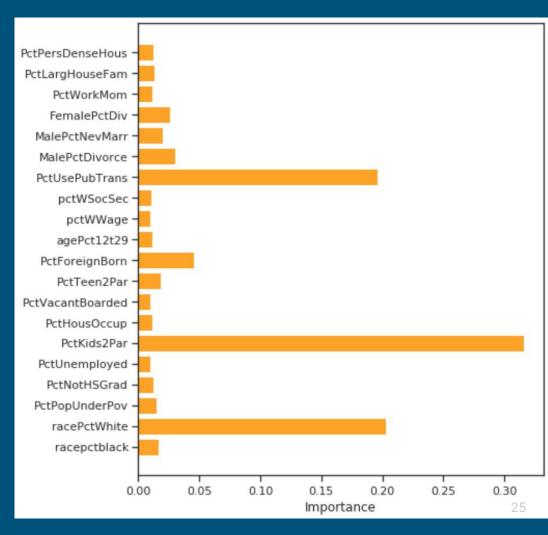
Confusion matrix:

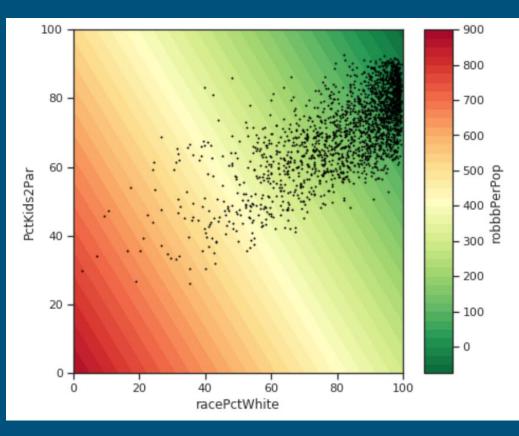
all fractions of predictions the model classified right or wrong.

5. Judge the performance (regression)

The coefficient of determination R2:

the fraction of the "variance" of the target that was explained.

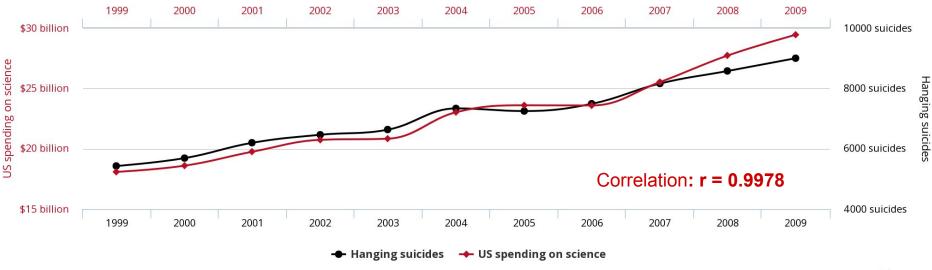

If R2 = 0.55:


55% of the variance of the target has been accounted for, and the remaining 45% of the variability is still unaccounted for.

https://en.wikipedia.org/wiki/Coefficient_of_determination

6. Understand the important features and their role

Some training algorithms can summarize the relative importance of each feature:

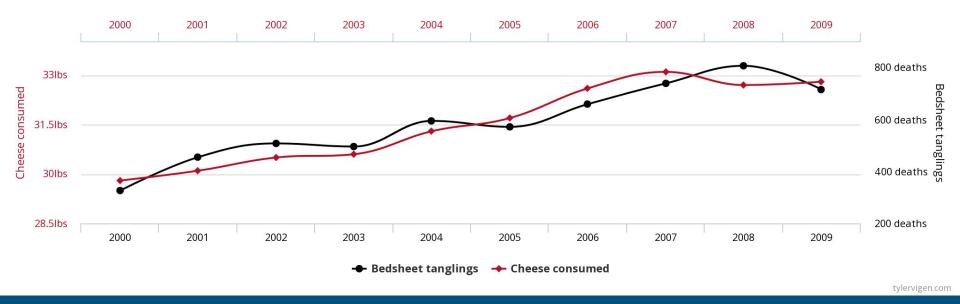

"If, in this community, many children live in 1-parent homes, and the ratio of whites is low, I predict a high crime rate."

The ethical minefield

Apply Machine Learning carelessly, and bad things will happen

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation



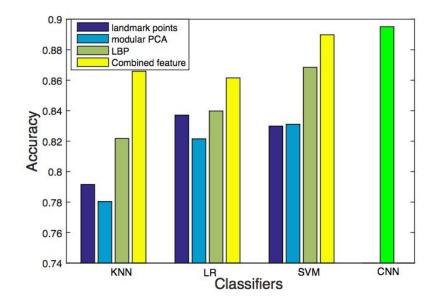
tylervigen.com

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

Analysing natural language using <u>https://cloud.google.com/natural-language/</u> in 2017:

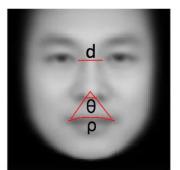

Text: i'm christian Text: i'm a dog Sentiment: 0.1000000149011612 Sentiment: 0.0

Text: i'm a sikh Sentiment: 0.3000001192092896 Text: i'm a homosexual

Sentiment: -0.5

Text: i'm a jew Sentiment: -0.20000000298023224 Text: i'm a homosexual dog Sentiment: -0.600000238418579

Sentiment analyzers are trained on human texts. They reflect the biases found in society. Automated Inference on Criminality using Face Images. Wu and Zhang, 2016. ArXiv.


(a) Three samples in criminal ID photo set S_c .

(b) Three samples in non-criminal ID photo set S_n

"The **angle** θ from nose to mouth corners is (on average) 19.6% smaller for criminals.

The **upper lip curvature** ρ is 23.4% larger for criminals. The **distance d** between eye corners for criminals is slightly narrower (5.6%)."

Top feature for the criminals: **no smile**!

The researchers confused **facial structure** with **facial expression** (big mistake).

The input <u>data is biased</u>: the criminals in the dataset are **convicted**, which may reflect in their ID pictures.

Find better data!